The emergence of quantum reinforcement learning (QRL) is propelled by advancements in quantum computing (QC) and machine learning (ML), particularly through quantum neural networks (QNN) built on variational quantum circuits (VQC). These advancements have proven successful in addressing sequential decision-making tasks. However, constructing effective QRL models demands significant expertise due to challenges in designing quantum circuit architectures, including data encoding and parameterized circuits, which profoundly influence model performance. In this paper, we propose addressing this challenge with differentiable quantum architecture search (DiffQAS), enabling trainable circuit parameters and structure weights using gradient-based optimization. Furthermore, we enhance training efficiency through asynchronous reinforcement learning (RL) methods facilitating parallel training. Through numerical simulations, we demonstrate that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures across considered environments, showcasing stability across diverse scenarios. This methodology offers a pathway for designing QRL models without extensive quantum knowledge, ensuring robust performance and fostering broader application of QRL.
The rapid advancements in quantum computing (QC) and machine learning (ML) have led to the emergence of quantum machine learning (QML), which integrates the strengths of both fields. Among QML approaches, variational quantum circuits (VQCs), also known as quantum neural networks (QNNs), have shown promise both empirically and theoretically. However, their broader adoption is hindered by reliance on quantum hardware during inference. Hardware imperfections and limited access to quantum devices pose practical challenges. To address this, the Quantum-Train (QT) framework leverages the exponential scaling of quantum amplitudes to generate classical neural network parameters, enabling inference without quantum hardware and achieving significant parameter compression. Yet, designing effective quantum circuit architectures for such quantum-enhanced neural programmers remains non-trivial and often requires expertise in quantum information science. In this paper, we propose an automated solution using differentiable optimization. Our method jointly optimizes both conventional circuit parameters and architectural parameters in an end-to-end manner via automatic differentiation. We evaluate the proposed framework on classification, time-series prediction, and reinforcement learning tasks. Simulation results show that our method matches or outperforms manually designed QNN architectures. This work offers a scalable and automated pathway for designing QNNs that can generate classical neural network parameters across diverse applications.
Recent advances in quantum computing and machine learning have given rise to quantum machine learning (QML), with growing interest in learning from sequential data. Quantum recurrent models like QLSTM are promising for time-series prediction, NLP, and reinforcement learning. However, designing effective variational quantum circuits (VQCs) remains challenging and often task-specific. To address this, we propose DiffQAS-QLSTM, an end-to-end differentiable framework that optimizes both VQC parameters and architecture selection during training. Our results show that DiffQAS-QLSTM consistently outperforms handcrafted baselines, achieving lower loss across diverse test settings. This approach opens the door to scalable and adaptive quantum sequence learning.