AI for Finance

Collaborative project with PecuLab.

Candlesticks are graphical representations of price movements for a given period. The traders can discovery the trend of the asset by looking at the candlestick patterns. Although deep convolutional neural networks have achieved great success for recognizing the candlestick patterns, their reasoning hides inside a black box. The traders cannot make sure what the model has learned. In this contribution, we provide a framework which is to explain the reasoning of the learned model determining the specific candlestick patterns of time series. Based on the local search adversarial attacks, we show that the learned model perceives the pattern of the candlesticks in a way similar to the human trader. 

To successfully build a deep learning model, it will need a large amount of labeled data. However, labeled data are hard to collect in many use cases. To tackle this problem, a bunch of data augmentation methods have been introduced recently and have demonstrated successful results in computer vision, natural language and so on. For financial trading data, to our best knowledge, successful data augmentation framework has rarely been studied. Here we propose a Modified Local Search Attack Sampling method to augment the candlestick data, which is a very important tool for professional trader. Our results show that the proposed method can generate high-quality data which are hard to distinguish by human and will open a new way for finance community to employ existing machine learning techniques even if the dataset is small. 

Deep learning (DL) has been applied extensively in a wide range of fields. However, it has been shown that DL models are susceptible to a certain kinds of perturbations called \emph{adversarial attacks}. To fully unlock the power of DL in critical fields such as financial trading, it is necessary to address such issues. In this paper, we present a method of constructing perturbed examples and use these examples to boost the robustness of the model. Our algorithm increases the stability of DL models for candlestick classification with respect to perturbations in the input data.